RAPPELS SUR LES DÉRIVÉES ET LES PRIMITIVES

I. Dérivées des fonctions usuelles :

1°) Tableau des dérivées de fonctions usuelles (rappel et complément) :

	Domaine de définition de <i>f</i>	fonction f	fonction f'	Domaine de définition de f^{\prime}
1	IR	f(x) = k (constante)	f'(x) = 0	IR
2	IR	f(x) = x	f'(x) = 1	IR
3	IR	f(x) = mx + p	f'(x) = m	IR
4	IR	$f(x) = x^2$	f'(x) = 2x	IR
5	IR	$f(x) = x^3$	$f'(x) = 3x^2$	IR
6	IR	$f(x) = x^n \ (n \in \mathbb{N}^*)$	$f'(x) = nx^{n-1}$	IR
7	IR*	$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	IR*
8	IR	$f(x) = \sin(x)$	$f'(x) = \cos(x)$	IR
9	IR	$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	IR

Remarque:

Les lignes 2 et 4 à 7 peuvent se résumer en une seule formule :

pour tout
$$n \ge -1$$
, si $f(x) = x^n$, alors $f'(x) = nx^{n-1}$.

Il faut simplement faire attention au domaine de définition si n < 0.

2°) Opération sur les fonctions dérivables (rappel et compléments) :

Dans le tableau ci-dessous, u et v sont des fonctions définies sur un même intervalle I et λ est un nombre réel.

Fonction	Fonction dérivée	Exemple
u + v	u' + v'	$\operatorname{Si} f(x) = x + \frac{1}{x} \operatorname{alors} f'(x) = 1 - \frac{1}{x^2}.$
λи	λu′	$\operatorname{Si} f(x) = 3x^2 \operatorname{alors} f'(x) = 3 \times 2x = 6x.$
uv	u'v + uv'	Si $f(x) = (x^2 + 2)\cos(x)$ alors $f'(x) = 2x \times \cos(x) + (x^2 + 2)(-\sin(x))$.
(<i>u</i> ne s'annule par sur I) $\frac{1}{u}$	$-\frac{u'}{u^2}$	Si $f(x) = \frac{1}{x^2 + 1}$ alors $f'(x) = \frac{-2x}{(x^2 + 1)^2}$.
(<i>u</i> ne s'annule par sur I) $\frac{u}{v}$	$\frac{u'v-uv'}{v^2}$	$\operatorname{Si} f(x) = \frac{2x+3}{4x-4} \operatorname{alors} f'(x) = \frac{2(4x-4)-4(2x+3)}{(4x-4)^2} = \frac{-20}{(4x-4)^2}$

3°) Dérivée de g(ax + b):

Propriété:

Soit f une fonction définie sur un intervalle I, et g une fonction définie et dérivable sur J telles que f(x) = g(ax + b), où a et b sont des réels tels que $ax + b \in J$.

Si la fonction g est dérivable sur J, alors f est dérivable sur I et f'(x) = ag'(ax + b).

Exemple:

Soit f la fonction définie et dérivable sur \mathbb{R} par $f(x) = \cos(3x + 2)$.

$$f(x) = g(ax + b)$$
, avec $g(x) = \cos(x)$ et $ax + b = 3x + 2$. Donc $a = 3$, et $g'(x) = -\sin(x)$.

alors
$$f'(x) = ag'(ax + b) = a \times (-\sin(ax + b)) = -3\sin(3x + 2)$$
.

Ce qui nous permet d'ajouter deux lignes au tableau des dérivées :

	Domaine de définition de <i>f</i>	fonction f	fonction f'	Domaine de définition de f'
10	IR	$f(x) = A \sin(\omega t + \varphi)$	$f'(x) = A\omega \cos(\omega t + \varphi)$	IR
11	IR	$f(x) = A\cos(\omega t + \varphi)$	$f'(x) = -A\omega \sin(\omega t + \varphi)$	IR

II. Les primitives:

1°) Définition :

Définition:

On dit que F est une primitive de f sur un intervalle I de \mathbb{R} si F est dérivable sur I et que F '= f sur I.

Autrement dit, F est une primitive de f si et seulement si f est la dérivée de F.

Remarque:

Les logiciels de calcul formel ont une commande de calcul de primitive : intégrer (fonction, x), ou sous GeoGebra intégrer(fonction).

Exemple:

 $F(x) = x^2$ est une primitive de f(x) = 2x. En effet, F'(x) = 2x.

$$G(x) = 6x^2 + 4x - 6$$
 est une primitive de $g(x) = 2x^3 + 2x^2 - 6x$ car $G'(x) = g(x)$.

2°) Propriétés :

Propriété:

Soit F une primitive de f sur un intervalle I. Alors pour tout réel c, la fonction G définie par G(x) = F(x) + c est aussi une primitive de f sur I et toute primitive de f sur I est de ce type.

Autrement dit : Deux primitives d'une même fonction diffèrent d'une constante.

Remarque:

Une fonction admettant des primitives sur *I* en possède donc une infinité.

Exemple:

Si f(x) = 2x, toutes les primitives de f sont de la forme $F(x) = x^2 + c$ avec $c \in \mathbb{R}$.

3°) Tableau des primitives :

En lisant le tableau des dérivées à « l'envers », on obtient le tableau suivant :

La fonction f		<u>Une</u> primitive F	Définie sur
1	$f\left(x\right) =0$	$F\left(x\right) =c$	IR
2	$f\left(x\right) =k$	$F\left(x\right) =kx$	IR
3	$f\left(x\right) =x$	$F\left(x\right) = \frac{x^2}{2}$	IR
4	$f\left(x\right)=x^{n}$	$F(x) = \frac{x^{n+1}}{n+1} \qquad (n \text{ entier avec } n \ge 1)$	IR
5	$f(x) = \sin(x)$	$F(x) = -\cos(x) + c$	IR
6	$f(x) = \cos(x)$	$F\left(x\right) = \sin\left(x\right) + c$	IR
7	$f(x) = A \sin(\omega t + \varphi)$	$F(x) = -\frac{A}{\omega} \cos(\omega t + \varphi) + c$	IR
8	$f(x) = A\cos(\omega t + \varphi)$	$F(x) = \frac{A}{\omega} \sin(\omega t + \varphi) + c$	IR

Remarque:

La ligne 3 est un cas particulier de la ligne 4 : cas où n = 1.

<u>4°) Opérations sur les primitives :</u>

Théorème:

Soient f et g deux fonctions dérivables sur un intervalle I de \mathbb{R} et k une constante réelle.

Si F est une primitive de f, alors kF est une primitive sur I de kf.

Si F est une primitive de f et G une primitive de g alors F + G est une primitive de f + g.

Remarque:

Cette propriété permet de trouver les primitives de tous les polynômes.

Exemple:

Soient
$$f(x) = x^5 + 3x^2 - 5x + 2$$
 alors une primitive de f est $F(x) = \frac{x^6}{6} + 3\frac{x^3}{3} - 5\frac{x^2}{2} + 2x$.

Donc
$$F(x) = \frac{x^6}{6} + x^3 - 2.5x^2 + 2x$$
.